hgeometry-combinatorial
Copyright(C) Frank Staals
Licensesee the LICENSE file
MaintainerFrank Staals
Safe HaskellNone
LanguageGHC2021

HGeometry.Trie.Binary

Description

A Trie type

Synopsis

Documentation

data TrieF (f :: k -> Type -> Type) (e :: k) v Source #

The Trie data type, parameterized by the data structure storing the children.

Constructors

Node v (f e (TrieF f e v)) 

Instances

Instances details
Bifoldable f => Bifoldable (TrieF f) Source # 
Instance details

Defined in HGeometry.Trie.Type

Methods

bifold :: Monoid m => TrieF f m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> TrieF f a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> TrieF f a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> TrieF f a b -> c #

Bifunctor f => Bifunctor (TrieF f) Source # 
Instance details

Defined in HGeometry.Trie.Type

Methods

bimap :: (a -> b) -> (c -> d) -> TrieF f a c -> TrieF f b d #

first :: (a -> b) -> TrieF f a c -> TrieF f b c #

second :: (b -> c) -> TrieF f a b -> TrieF f a c #

Bitraversable f => Bitraversable (TrieF f) Source # 
Instance details

Defined in HGeometry.Trie.Type

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> TrieF f a b -> f0 (TrieF f c d) #

Foldable (f e) => Foldable1 (TrieF f e) Source # 
Instance details

Defined in HGeometry.Trie.Type

Methods

fold1 :: Semigroup m => TrieF f e m -> m #

foldMap1 :: Semigroup m => (a -> m) -> TrieF f e a -> m #

foldMap1' :: Semigroup m => (a -> m) -> TrieF f e a -> m #

toNonEmpty :: TrieF f e a -> NonEmpty a #

maximum :: Ord a => TrieF f e a -> a #

minimum :: Ord a => TrieF f e a -> a #

head :: TrieF f e a -> a #

last :: TrieF f e a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> TrieF f e a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> TrieF f e a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> TrieF f e a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> TrieF f e a -> b #

Functor (f e) => Functor (TrieF f e) Source # 
Instance details

Defined in HGeometry.Trie.Type

Methods

fmap :: (a -> b) -> TrieF f e a -> TrieF f e b #

(<$) :: a -> TrieF f e b -> TrieF f e a #

Foldable (f e) => Foldable (TrieF f e) Source # 
Instance details

Defined in HGeometry.Trie.Type

Methods

fold :: Monoid m => TrieF f e m -> m #

foldMap :: Monoid m => (a -> m) -> TrieF f e a -> m #

foldMap' :: Monoid m => (a -> m) -> TrieF f e a -> m #

foldr :: (a -> b -> b) -> b -> TrieF f e a -> b #

foldr' :: (a -> b -> b) -> b -> TrieF f e a -> b #

foldl :: (b -> a -> b) -> b -> TrieF f e a -> b #

foldl' :: (b -> a -> b) -> b -> TrieF f e a -> b #

foldr1 :: (a -> a -> a) -> TrieF f e a -> a #

foldl1 :: (a -> a -> a) -> TrieF f e a -> a #

toList :: TrieF f e a -> [a] #

null :: TrieF f e a -> Bool #

length :: TrieF f e a -> Int #

elem :: Eq a => a -> TrieF f e a -> Bool #

maximum :: Ord a => TrieF f e a -> a #

minimum :: Ord a => TrieF f e a -> a #

sum :: Num a => TrieF f e a -> a #

product :: Num a => TrieF f e a -> a #

Traversable (f e) => Traversable (TrieF f e) Source # 
Instance details

Defined in HGeometry.Trie.Type

Methods

traverse :: Applicative f0 => (a -> f0 b) -> TrieF f e a -> f0 (TrieF f e b) #

sequenceA :: Applicative f0 => TrieF f e (f0 a) -> f0 (TrieF f e a) #

mapM :: Monad m => (a -> m b) -> TrieF f e a -> m (TrieF f e b) #

sequence :: Monad m => TrieF f e (m a) -> m (TrieF f e a) #

Traversable (f e) => Traversable1 (TrieF f e) Source # 
Instance details

Defined in HGeometry.Trie.Type

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> TrieF f e a -> f0 (TrieF f e b) Source #

sequence1 :: Apply f0 => TrieF f e (f0 b) -> f0 (TrieF f e b) Source #

(Show v, Show e, Show2 f) => Show (TrieF f e v) Source # 
Instance details

Defined in HGeometry.Trie.Type

Methods

showsPrec :: Int -> TrieF f e v -> ShowS #

show :: TrieF f e v -> String #

showList :: [TrieF f e v] -> ShowS #

(Eq v, Eq e, Eq2 f) => Eq (TrieF f e v) Source # 
Instance details

Defined in HGeometry.Trie.Type

Methods

(==) :: TrieF f e v -> TrieF f e v -> Bool #

(/=) :: TrieF f e v -> TrieF f e v -> Bool #

(Ord v, Ord e, Ord2 f) => Ord (TrieF f e v) Source # 
Instance details

Defined in HGeometry.Trie.Type

Methods

compare :: TrieF f e v -> TrieF f e v -> Ordering #

(<) :: TrieF f e v -> TrieF f e v -> Bool #

(<=) :: TrieF f e v -> TrieF f e v -> Bool #

(>) :: TrieF f e v -> TrieF f e v -> Bool #

(>=) :: TrieF f e v -> TrieF f e v -> Bool #

max :: TrieF f e v -> TrieF f e v -> TrieF f e v #

min :: TrieF f e v -> TrieF f e v -> TrieF f e v #

type BinaryTrie e v = TrieF (KV AtMostTwoOriented) e v Source #

A binary Trie type

pattern Leaf :: v -> BinaryTrie e v Source #

Pattern match on a leaf node

pattern LeftNode :: v -> (e, BinaryTrie e v) -> BinaryTrie e v Source #

Pattern match on a node with one child, namely on the left

pattern RightNode :: v -> (e, BinaryTrie e v) -> BinaryTrie e v Source #

Pattern match on a node with one child, namely on the left

pattern TwoNode :: v -> (e, BinaryTrie e v) -> (e, BinaryTrie e v) -> BinaryTrie e v Source #

Pattern match on a node with two children

asBinaryTrie :: forall (f :: Type -> Type) e v. Traversable f => TrieF (KV f) e v -> Maybe (BinaryTrie e v) Source #

Trie to convert the trie into a binary trie. If we only have one element, we alwasy produce a left node.

data AtMostTwoOriented a Source #

At most two elements. A one element can either be left or right

Constructors

Zero 
OneLeft !a 
OneRight !a 
Two !a !a 

Instances

Instances details
Eq1 AtMostTwoOriented Source # 
Instance details

Defined in HGeometry.Trie.Binary

Methods

liftEq :: (a -> b -> Bool) -> AtMostTwoOriented a -> AtMostTwoOriented b -> Bool #

Ord1 AtMostTwoOriented Source # 
Instance details

Defined in HGeometry.Trie.Binary

Show1 AtMostTwoOriented Source # 
Instance details

Defined in HGeometry.Trie.Binary

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> AtMostTwoOriented a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [AtMostTwoOriented a] -> ShowS #

Functor AtMostTwoOriented Source # 
Instance details

Defined in HGeometry.Trie.Binary

Foldable AtMostTwoOriented Source # 
Instance details

Defined in HGeometry.Trie.Binary

Methods

fold :: Monoid m => AtMostTwoOriented m -> m #

foldMap :: Monoid m => (a -> m) -> AtMostTwoOriented a -> m #

foldMap' :: Monoid m => (a -> m) -> AtMostTwoOriented a -> m #

foldr :: (a -> b -> b) -> b -> AtMostTwoOriented a -> b #

foldr' :: (a -> b -> b) -> b -> AtMostTwoOriented a -> b #

foldl :: (b -> a -> b) -> b -> AtMostTwoOriented a -> b #

foldl' :: (b -> a -> b) -> b -> AtMostTwoOriented a -> b #

foldr1 :: (a -> a -> a) -> AtMostTwoOriented a -> a #

foldl1 :: (a -> a -> a) -> AtMostTwoOriented a -> a #

toList :: AtMostTwoOriented a -> [a] #

null :: AtMostTwoOriented a -> Bool #

length :: AtMostTwoOriented a -> Int #

elem :: Eq a => a -> AtMostTwoOriented a -> Bool #

maximum :: Ord a => AtMostTwoOriented a -> a #

minimum :: Ord a => AtMostTwoOriented a -> a #

sum :: Num a => AtMostTwoOriented a -> a #

product :: Num a => AtMostTwoOriented a -> a #

Traversable AtMostTwoOriented Source # 
Instance details

Defined in HGeometry.Trie.Binary

Methods

traverse :: Applicative f => (a -> f b) -> AtMostTwoOriented a -> f (AtMostTwoOriented b) #

sequenceA :: Applicative f => AtMostTwoOriented (f a) -> f (AtMostTwoOriented a) #

mapM :: Monad m => (a -> m b) -> AtMostTwoOriented a -> m (AtMostTwoOriented b) #

sequence :: Monad m => AtMostTwoOriented (m a) -> m (AtMostTwoOriented a) #

Read a => Read (AtMostTwoOriented a) Source # 
Instance details

Defined in HGeometry.Trie.Binary

Show a => Show (AtMostTwoOriented a) Source # 
Instance details

Defined in HGeometry.Trie.Binary

Eq a => Eq (AtMostTwoOriented a) Source # 
Instance details

Defined in HGeometry.Trie.Binary

Ord a => Ord (AtMostTwoOriented a) Source # 
Instance details

Defined in HGeometry.Trie.Binary